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Abstract 

Many questions that arise in the reverse engineering or restructuring of a program can be 
answered by determining, statically, where the structure of the program requires sets of variables 
to share a common representation. With this information we can find abstract data types, detect 
abstraction violations, identify unused variables, functions, and fields of data structures, detect 
simple errors of operations on abstract datatypes (such as failure to close after open), and locate 
sites of possible references to a value. 

We have a method for computing representation sharing by using types to encode representations. 
We use polymorphic type inference to compute new types for all variables, eliminating cases of 
incidental type snaring where the variables might have different representations. The method is 
fully automatic and smoothly integrates pointer aliasing and higher-order functions. Because it is 
fully modular and computationally inexpensive, it should scale to very large systems. 

We show how we used of a prototype tool to analyze Morphin, a 17,000 line robot control 
program written in C, answering a user's questions about program structure, detecting abstraction 
violations, and finding unused data structures and memory leaks. 
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1   Introduction 

Many interesting properties of programs can be described in terms of constraints on the 
underlying representation of data values. As an obvious example, if a value is an instance 
of an abstract data type, then the client code must not constrain its representation. If the 
representations of two different supposedly abstract types are constrained to be the same, 
there is an abstraction violation. Less obviously, the value of a variable is never used if the 
program has no constraints on its representation. A necessary condition for a value defined 
at one site to be used at another is that the two values must have the same representation . 
By extending the notion of representation (for example, by distinguishing constants from 
mutables) we can encode other kinds of useful information. 

This characterization is profitable because these constraints can be solved using type 
inference. We can apply type inference to compute new types for the variables and textual 
expressions of a program, ignoring any actual type declarations and taking account only of 
the operations performed on the values; the primitive operations of the language induce 
constraints on the representations of their arguments. We recover a solution to the system 
of constraints from the inferred types. The type system we use to perform type inference 
can be very different to the type system for the source language . 

Type inference is a very attractive implementation technique for many reasons. It is simple 
and well-understood. It is efficient in practice (our system usually consumes space and 
time little more than linear in the size of the program being analyzed). It is fully automatic. 
It generalizes easily to rich source languages, such as languages with recursive pointer- 
based data structures and function pointers. It is sound for source languages with 
appropriate semantics3, in which case the results are guaranteed to be conservative. 

We have built a tool ("Lackwit") to demonstrate the feasibility of applying type inference 
analyses to C programs for program understanding tasks, and to experiment with the kind 
and quality of information available. The general architecture of the tool is shown in 
Figure 2. The multiple downward arrows indicate that C modules can be processed 
individually and fed into the database; the fat upward arrows show where information 
about the entire system is being passed. In the remaining sections of this paper, we will 
describe the intermediate code format, the translation process, and the type inference 

1 Some languages may allow a single value to be viewed as having different types at 
different points in a program, for example by implicit coercions. However these are just 
views of a single underlying representation; any meaningful transmission of data must use 
an agreed common representation. 
2 It is very important not to get the two notions of "type" confused. In this paper we will 
normally be referring to types in our specialized type system. 
3 Arguably, C does not have a well-defined semantics. The behaviour of C's "unsafe" 
constructs cannot be fully specified in any reasonable way, so any non-trivial static 
analysis, such as ours, must be unsound. 
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Figure 2: Tool Architecture 

system. We will present the results of applying our tool to some real-life C programs and 
discuss some user interface issues. 

Our system has advantages over all the other tools we know of for analyzing source code 
for program understanding; see Figure 1. Lexical tools [H88, MTOCM92, MN95] lack 
semantic depth in that they fail to capture effects such as aliasing that are vital for 
understanding the manipulation of data in large programs. Dataflow-based tools such as 
the VDG sheer [E94] and Chopshop [JR94] do not scale to handle very large programs. 
Code checking tools such as LCLint [EGHT94] do not try to present high-level views of a 
large system. (Furthermore, although LCLint does compute some semantic information, it 
does not have a framework for accurate global analysis.) 
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Figure 1: Tool feature comparison 

2   Example 

Consider the trivial program in Figure 3. In C, the declared type of a variable usually 
determines its representation, but that is simply a matter of convenience. The program 
would still operate correctly if we had several different representations of int, provided 
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int x; 
int pl; 

void f(int a, int b, int * c, int * d) 
{ x = a; 

*c =  *d; 
} 

void g(int p, 
{ int tl = 2; 

int * q, int * r, int * s) 

int cl, c2; 
int p; 

p = pi; 
x++; 
f(cl, p, &tl, q) ; 
f(c2, 4, r, s); 

} 

Figure 3: Trivial program 

that each version of int had the same semantics and that they were used consistently4. 
Intuitively, we could determine consistency by augmenting the declared type with the 
representation, and type-checking the program. 

Figure 4 shows a consistent augmentation of the trivial program. The names ending in 
capital letters indicate polymorphic type variables: for any choice of representations intA 
and intB, the function/would type-check; we might just as well have different versions of 
/for each choice of intA and intB. This means that in g we are free to assign q and s 
different representations. Note that because of the reference to x, the first argument of/is 
not polymorphic; its representation is fixed across different calls to/ 

intl x; 
int2 pl; 

void f(intl a, intA b, intB * c, intB * d) 
{ x = a; 
*c = *d; 

} 

void g(intY * q, intX * r, intX * s) 
{ intY tl = 2; 
intl cl, c2; 
int2 p; 
p = pi; 
x++; 
f(cl, p, &tl r   q) ; 
f(c2, c2, r, s); 

} 

Figure 4: Trivial program annotated with representations 

Of course we do not propose implementing such a scheme. This is merely a pedagogical 
device. 
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Suppose that we specify that the arguments of all primitive arithmetic operations have 
representation intl. Then Figure 4 is still consistent. If/? is intended to be an abstract file 
descriptor, we can see from its annotated type alone (the fact that it need not be intl) that 
no arithmetic operations can be performed on it; we can conclude that abstraction is 
preserved. 

To reduce the incidental sharing of representations, which lead to spurious warnings, we 
would like to compute the most general assignment of representations to variables that is 
consistent with the communication patterns of the program. If we view the representations 
themselves as types, then this is the problem of type inference [M78]. 

In the program above, type inference would proceed as follows. Let x have type intZ, and 
pi have type intK. In/, because of the assignment of a to x, x and a must have the same 
type, so a has type intZ. *c and *d must have the same type, so let their types be "pointer 
to intE". b is unconstrained so let it have type intA. Now we observe that the choices of 
intA and intB are arbitrary, and therefore/is polymorphic in intA and intB. 

Now, in g we perform arithmetic on x, so x must be type intl and we have intZ = intl. We 
find that/? has the same type as pi, which is intK. In the first call to/we instantiate intA 
to be some fresh variable intWand intB to be some fresh intY; we find that cl must have 
type intl, pis intW, and tl and q are intY and "pointer to intY' respectively. Since/? is 
simultaneously intK and intW, we must set intW= intK. In the second call to/we 
instantiate intA to be some fresh variable intV and intB to be some fresh intX; then we find 
that c2 has type intl, intV must be intl, and r and s are both "pointer to intX". Because 
intX and intY were arbitrary choices, the previous derivation is valid for all possible values 
of intX and intY, and therefore g is polymorphic in all its arguments. Finally, we note that 
pi is of some type intK where intK is arbitrary but fixed (intuitively, we can't have 
different versions of pi with different representations, because that would destroy 
sharing). Therefore we set intK to be some arbitrary representation intl, for maximum 
generality, we make each such choice unique. 

3   Intermediate code format 

We have chosen to begin by translating C programs into an intermediate form which we 
call Q6. Once we have an algorithm to faithfully translate from C to Q6, we only need to 
consider the analysis of Q6. This makes the analysis somewhat independent of the choice 
of source language (for example, it would be easy to retarget to analyze Pascal), and also 
greatly simplifies the presentation. 

Programs in Q6 are expressions: 

=    X (Variable reference) 
|     fun(jc) { e } (Function declaration) 
1     *i(e2) (Function application) 
|     let X\ = e\; ... ; xn = en in e (Sequential variable binding) 
|     letrec x\ = e\\ ... ; xn = en in e (Mutually recursive variable binding) 
|     if ei then e2 else £3 (Conditional expression) 
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Q6 programs are provided an initial environment that includes functions for all the usual 
primitive operations, as well the operators and unsafe constructs required by C. In 
particular, we have primitives for memory cell creation, dereference and update, tuple 
construction and extraction, numeric constants, and arithmetic operators. 

4   Translation from C to Q6 

The basic ideas behind the translation are simple, though the details are messy. A guiding 
principle has been to preserve execution semantics when unsafe constructs are not being 
used, and to do something sensible when they are. This means we actually preserve much 
more information during translation than we actually need for the analysis (such as 
information about the execution order of statements), but for research it gives us 
maximum flexibility to experiment with the analysis. See Figure 5 for an example of the 
output of our translator. (The translator does little optimization of the Q6 code; here we 
have eliminated some redundant code for clarity.) 

A C program can be viewed as a set of global definitions of variables and functions, 
possibly mutally recursive. We process each definition individually, translating it into a Q6 

int f(int * x, int n, int a) { 
int i; 
for (i = 0; i < n; i++) /* statement 1 */ 

if (x[i] == a) /* statement 2 */ 
return i; /* statement 3 */ 

return -1; /* statement 4 */ 
} 

f = fun(args) { 
let a = #1 args 

n = #2 args 
x = #3 args 

in letrec i = ref 0 
stmtl_a = fun(dummy) { 

stmtl_b( (fun(dummy) { i })(assign(i)(0)) ) 
} 

s tmt l_b = fun (dummy) { 
if <(deref(i)) (deref(n)) then stmt2( () ) 

else stmt4( () ) 
} 

stmtl_c = fun(dummy) { stmtl_b( 
let v = deref(i) 
in (fun(dummy) { ref(v) })(assign(i)( +(v)(1) ) 

) } 
stmt2 = fun(dummy) { 

if ==(deref( ptr+(deref(x))(deref(i)) ))(deref(a) 
then stmt_3( () ) else stmtl_c( () ) 

} 
stmt3 = fun(dummy) { i } 
stmt4 = fun(dummy) { ref(-(l)) } 

in stmtl_a( () ) 
} 

Figure 5: Translation example 
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expression (with an associated identifier). We could treat the entire C program as one 
large letrec5 of these expressions, but in the type system we use that would not permit the 
use of polymorphism (see below), so we use a graph algorithm to determine the sets of 
mutually recursive declarations and then order the declarations into a sequence of letrecs. 

All C variables are mutable6, so a C variable i is translated to a Q6 variable i bound to a 
memory location containing the actual value. C structures are converted to Q6 tuples that 
contain the fields in the order in which they were declared. (Like variables, structure fields 
are bound to a memory location with their value.) To handle arrays and C's pointer/array 
dichotomy, we make each Q6 memory location an infinitely growable array; pointers are 
implemented as a pair consisting of a memory location and an index, and pointer 
arithmetic updates the index. (Our type inference does not distinguish the elements of 
arrays, so there is no cost associated with this device.) It is convenient to treat all 
functions as having one argument, so we pass multiple arguments using the standard 
convention of bundling them into a tuple. 

To translate irregular control constructs within a function, such as goto, we translate each 
statement into a function taking a dummy argument and returning the result of the source 
function. So normally, if a statement si is followed by s2, then si will perform some 
action and then return the result of a call to s2. 

C has many unsafe features, but those normally considered errors can be handled by the 
translation. The use of uninitialized variables is avoided by initializing all variables to 
default values7. Reading and writing beyond array bounds is avoided by making arrays 
unbounded8. We can safely introduce a NULL pointer value into Q6, with the semantics 
that any primitive operation given a NULL pointer immediately aborts the program. 

Other unsafe features are commonly used and we must emulate them in a way that might 
not agree with the execution of the original program; this causes unsoundness in our 
analysis. Unions are treated as structures; programs that use unions consistently as variant 
records will execute correctly after translation, but programs that use unions to perform 
arbitrary type casts will not. Explicit non-trivial type casts (or implicit casts to pointer-to- 
void) are translated to a cast primitive; unfortunately the execution semantics of this 

5 For simplicity of translation, we allow letrec to bind variables to expressions that are not 
functions, providing that such an expression contains no references to identifiers bound in 
the letrec (this disallows "letrec a = b ; b = a in ..."). 
6 We ignore "const" - since you can take the address of a "const" variable, it's still 
necessary to represent it with a memory location. 
7 These simple errors can usually be detected by standard techniques, so we don't try to 
catch them. However, it turns out that our analysis can distinguish the translator's default 
initialization from source-level initialization, so we can in fact detect many such errors 
(including uninitialized components of structures, and in the presence of aliases). 
8 These would make execution excrutiatingly inefficient, but that doesn't matter to us. 
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primitive cannot be specified in any reasonable way. Functions with a variable number of 
optional arguments are not passed the optional arguments. 

5   Type inference for Q6 

We use a simple polymorphic type system with recursive types. Monotypes % and 
polytypes a obey the following productions: 

x ::= 

T (Monomorphic type) 
Va.Gi (Polymorphic quantification) 
a (Type variable) 

xi ->ß t2 
(Function) 

Ti ref3 (Reference (pointer)) 

(Xi, T2, -, <f (Tuple) 
number15 (Scalar) 

a is a metavariable that ranges over an infinite set of type variables. If the ßs are ignored, 
this is a completely standard polymorphic type system for simple lambda languages9. We 
use the standard inference algorithm W10 [M78, DM82] to compute the types of all 
variables of a source program (which initially no type declarations). (The computations 
described in Section 2 correspond to steps in the execution of W.) 

The ßs are tags that we use to track the identity of type constructors11. A fresh tag is 
generated whenever a type constructor is introduced in a new constraint. Whenever we 
find that two types are constrained to be identical, we unify their two type constructors, 
and their tags are merged; thus the tags partition the set of occurrences of type 
constructors. For example, if two variables have ref constructors with different tags, then 
they are not aliases12'13. If two variables are tuples with the same tag, then they must be 
structures of the same abstract type (or abstraction violations have occurred). The tags are 
simple to implement: they can be treated merely as an extra parameter of the type 
constructor. 

9 We do not use polymorphic recursion; that is, let and letrec bindings are the only places 
where we perform polymorphic generalization. 
10 We use a value restriction on polymorphic lets to make side-effects safe [W95]. 
11 These tags correspond to the region variables of region inference [TT94]. 
12 See Steensgaard's work on points-to analysis [S96]. Similarly, comparing the tags on 
function types with the tags on declared functions gives us an analysis of higher-order 
control flow. 
13 Actually in the polymorphic type system we must use a more complicated relation than 
just tag equality; see below. 

Page 7 



For example, for the function in Figure 5 we derive the type 
f: Voc.Vß.(number" ref ref, number15 ref, number" ref) —> number15 ref 

(tags on refs elided for clarity). This expresses the constraint that the numbers in the array 
and the number being searched for are constrained to have the same representation, and 
that the array size and the returned array index also have the same representation. We 
know that the array contents and indices are all integers, but there is more to 
representation than that; for example, the array values may be in dollar units, but the 
indices are cardinals. The tags let us distinguish these different encodings. Note that the 
tags are polymorphic; the representations could be different at each call site. Thus we 
obtain a context-sensitive analysis of function calls. 

We supply type signatures for the built-in primitives and any library functions that are 
called; these signatures are the only information about external code that we require. Since 
such signatures are also the result of the analysis, this makes our techniques modular (and 
contributes to scalability). By adjusting the signatures, we can customize the analysis to 
compute different kinds of information (see Section 9). 

The basic signatures are listed in Appendix 1. The only interesting signature is for the cast 
operator. If we wish to compute consistent types for all compilable C programs, we must 
allow a cast to magically convert a value from any type to any other, making the type 
system unsound14. Alternatively, we can treat "cast" as the identity function, in the hope 
that casts are merely being used to work around the lack of polymorphism in C's type 
system (and so the program will still be typable in our type system). Even if this is not 
true, we can still report any type errors, display their context, and continue the analysis. 
The user may be able to check whether the results they are interested in have been 
compromised. In our Morphin example below (17,000 lines), there are just two "bad" type 
casts. 

Recursive types are treated as infinite regular trees (see Cardone and Coppo [CC92] for 
details). 

6   Displaying Data 

The result of the type inference phase is a mapping from source variables and functions to 
type signatures in our extended type system. We provide ways to filter out interesting 
information and display it graphically in a way that has a clear relationship to the source 
program. 

Our basic approach is to produce a graph summarizing the information about a single 
component of a variable (see Figure 6 below). The nodes of the graph represent top-level 
declarations, and the edges represent the use of one declaration by another in the text of 
the program. Arrows point from the using declarations to the used declarations. When we 
can prove, by inspecting signatures (see below), that a use cannot transmit the value of the 

14 If we do this, then the typing of a C program given by a C compiler can be translated 
into a valid typing of the corresponding Q6 code, and the type inference algorithm will 
find a valid typing if one exists, so we will successfully type all compilable C programs. 
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queried component, then we omit the corresponding edge. By eliminating unreachable 
nodes, we show just the part of the program that is able to access the value. A value is 
transmitted by passing a data structure containing it as a parameter in a function call, or by 
returning such a data structure from a function call, or by referencing global data 
(containment includes reachability through pointers). 

The inspection of signatures used to filter the edges works as follows. The user has 
specified a global variable, function result, function parameter or local variable, or some 
component thereof (a chain of pointer dereferences and/or structure fields). Because any 
accesses to run-time values of the component must agree on the representation, the types 
of the components through which accesses are made must have tags that are "compatible", 
with the tag on the type of the queried component. In a monomorphic type system, the 
"compatibility" relation is just tag equality, but with polymorphism we have to consider 
that a polymorphic tag may be instantiated to some other tag, which means the same run- 
time value could be accessible through different tags. For example, in Figure 4, the value 
of s is accessed with tags intB and intX. Therefore we define two tags S and Tto be 
"compatible" if there is some tag [/such that the program exhibits a chain of instantiations 
from S to f/and a chain of instantiations from Tto [/(the chains may be empty). Note that 
this relation is symmetric but not transitive — in Figure 4 intB is compatible with intXand 
intY, but intX'is not compatible with intY. 

We determine the set of "tags of interest" that are compatible with the tag of the queried 
component, and locate the declarations whose signatures contain occurrences of tags of 
interest. Declarations whose signatures do not contain any occurrences of tags of interest 
do not transmit any interesting values when they are used, so those uses are omitted from 
the graph. Since polymorphic signatures can be instantiated to different types at different 
usage sites, we also omit uses when the type at the usage site does not contain any tags of 
interest. 

There is a difficult tradeoff between detail and clarity in choosing what kinds of 
information to display for each node and edge. We have found it useful to visually 
distinguish functions from global data, and to highlight nodes that are "interesting" (for 
example, functions that directly access the representation of some variable). Clearly it 
would be beneficial to have an interactive display, which we plan to add in future work. 

To compute local information (for example, to determine whether or not a function's body 
constrains the representation of some piece of data), we simply apply the usual type 
inference to a single declaration. Any declarations that it references are treated as not 
inducing any constraints. For example, in Figure 6, we determine that the definition of 
mapjngr convert_pixel coords does not directly access the representation of the vehicle 
object, even though it calls a function which does. 

7   Results (1) 

We have used our tool to analyze Morphin, a robot vehicle control program consisting of 
over 17,000 lines of C code, with 252 functions and 73 global variables. Morphin is to be 
restructured and adapted to support new features. The developer responsible for this work 
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asked us to determine where and how certain structures were used, if at all. In the course 
of answering his questions, Lackwit also highlighted some representation exposures. 

We computed results for queries of the form "Which functions in the program could 
directly access the representation of component X of variable Y?" Figure 6 shows the 
results of a query on the "current vehicle" field of the map manager global global 
variable (we also allow queries involving local variables and function parameters). Given 
that the "veh_" functions are operations on the vehicle abstract data type, it's easy to see 
that abstraction may be violated in the functions map mgrjprocess image, 
mapjngrcompj-angejvindow, and map_mgr_process_geometry_rangejvindow, but 
nowhere else. 

The shaded nodes are the definitions that directly access representations; that is, whose 
code constrains the representation of the value in question. In this case, the value in 
question is a structure, and the shaded nodes constrain the type by accessing fields of the 
structure. 

To give some idea of the performance of our prototype, Lackwit built the constraint 
database from the 17,000 lines of source in 274 seconds (wall-clock time). The database is 
about 15MB. The type inference procedure took 78 seconds to solve the constraints, 
about 23 seconds of which was user-level CPU time. After solving the constraints, 
individual queries are answered almost instantly. These numbers are for a 90Mhz Pentium 
with 32MB of RAM running Windows NT. As we will discuss in Section 10, certain 
optimizations could dramatically improve performance. It should be noted that the process 
of building the database can be carried out independently for each source module; thus the 
potential performance bottlenecks are all in the solver. 

The type inference algorithm processes functions one at a time, iteratively computing a 
signature for each function and adding it to a "type environment". While processing a 
function, the main operation is unification of types, the cost of which is proportional to the 
smaller of the sizes of the descriptions of the types15. The number of unifications 
performed is proportional to the size of the code for the body of the function, which is 
preserved (to within a constant factor) by the translator. Therefore, if the size of the 
inferred types is bounded, the solver takes time and space little more than linear in the size 
of the program. The types are small in practice. 

15 Actually, because we must maintain equivalence classes of type variables using union- 
find with path compression, there is a superlinear component of oc(n), where a is the 
inverse Ackermann function. For all practical purposes, oc(n) < 6. 
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To attempt to characterize the sizes of query results, we computed for every possible 
query an upper bound approximation of the number of nodes of the graph we would 
produce (see Figure 7). Figure 8, Figure 9, and Figure 10 show the sizes of results of 
queries on all pointers, structures and scalars respectively. The large spike at the right- 
hand side of Figure 7 and Figure 10 is due to a set of integer variables that are grouped 
together by chains of arithmetic operations; queries that hit this set (about 65% of all 
queries on integer-valued components) will probably produce too much information to be 
useful. However, queries on structures and pointers will produce results of managable 
size. 

attribution of Oraph S!TM For All PenlbU Qutriti 

"* ram I' 

to 9ze of Graph 

Figure 7: Distribution of Graph Sizes 
For All Queries 

Mftri button of Oraph Six*« for Quorloa on Pointtn 

OparaiifMW SI» of Gnph 

Figure 8: Distribution of Graph Sizes 
For Queries on Pointers 

Diltributian of Oraph Sliw for Quartal en Structural 

JjUli 
Approri mat • S)n of Graph 

Figure 9: Distribution of Graph Sizes 
For Queries on Structures 

Mttrlbutlon of Oreph Sbaa for Quorloa on Inttgara 

14CCCO liiiiiiiiiM^iiiiiiiiil^ 
1ZDCD 

«m. 

jam, 

1™ 

m 

zom . 
0 ■•■IIIIMIlllllll 

fl|l|lllll<ll1lSM«fGnph 

Figure 10: Distribution of Graph Sizes 
For Queries on Integers 

8    Extensions to the type system 

We can analyze a broader range of program properties by extending the type sytem in 
simple ways. For example, it is useful to know whether a memory location is never read or 
never written, or whether a piece of dynamically-allocated storage is never allocated or 
never deallocated, or where these effects might occur. We encode such properties by 
introducing specialized type constructors and a subtype relation (see Figure 11). Primitives 
such as "assign" and "deref' now constrain their arguments to be "written" refs and "read" 
refs respectively. 
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ref(read) ref (written) 

ref (read and written) 

Figure 11: Read/write attributes for memory locations 
(arrows point from supertypes to subtypes) 

This is easy to implement when the properties are a vector of boolean values and all 
constraints are of the form "property p is true"16. We simply use our existing type 
inference procedure and attach additional parameters to the type constructors, one for 
each boolean. Operations that constrain a property of their arguments or results use the 
special type unit as the appropriate parameter of the type constructor, otherwise they have 
a type variable. For example, if we give a pointer to a the type "(a, read, written) ref, 
then the signature of "deref' becomes "Voc.Vß.(a, unit, ß) ref —> a". 

When type inference is finished and we have the signatures of all the functions and local 
and global variables, we can easily inspect them to discover anomalous types, such as 
memory locations that are never read (the "read" parameter is a type variable), or dynamic 
storage that may be allocated but is never deallocated (the "allocated" parameter is unit 
but the "deallocated" parameter is a type variable). 

If the condition of interest can be written in the form "P and not Q" (this includes all the 
examples we have presented), then we do not report an anomaly unless one actually exists 
(assuming that there are no errors introduced by the translation from C to Q6, and that 
there is no "dead code" - for every call to a primitive operation in the program, there is 
some input that will cause it to be executed). For if a type has property P, then there must 
be some call to a primitive operation that constrains the type to have that property, and 
since there is no dead code, there is some execution that invokes this operation (so there 
will be a run-time value V with property P). If the type does not have property Q, then 
there is no operation that constrains the type to be Q, and so the run-time value V cannot 
obtain property Q. 

Although we do not report spurious anomalies, we can only give an upper bound 
approximation to the actual site(s) of any problems, based on the occurrences of the type 
tag as described in Section 6. 

16 Although "all properties are true" will always be a solution, we will recover the most 
general solution. For example, we may discover that a program is consistent with a 
memory location being either "read" or "unread", in which case we may legitimately treat 
it as "unread" (and eliminate the offending variable or structure element). 
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9 Results (2) 

We used these techniques to perform two specialized analyses: detection of data that is 
never read, and detection of memory leaks. These correspond to checking, for each type 
that is a memory location, whether the location is created (by a variable entering scope or 
by dynamic allocation) and not read, or whether the location is dynamically allocated and 
not dynamically deallocated. All reported candidates were shown to be non-spurious by 
human inspection of the source code. 

Lackwit reported nine global variables that are never read and ten local variables that are 
never read. In addition, it reported that six local variables are structures containing some 
fields that are never read. 

Checking for memory leaks, Lackwit reported that six global variables refer to dynamic 
data structures that are never freed. (These do not cause problems in practice, since they 
are freed by the operating system when the process terminates, but they are poor 
programming style.) It also discovered two fields of data structures that are pointers to 
memory that is never freed. These are a genuine problem, because these pointers are 
updated in a frequently-executed loop. 

10 Current Status and Future Work 

The Lackwit front end is currently written in C and C++, and is based on the PCCTS 
toolkit [PDC92]. The database is simply a sequential binary file, implemented by hand in 
C. The solver and query engine are also written in C; currently the query language is very 
simple and a bit unwieldy. The query engine outputs relational tables in a text format. A 
Perl script converts these tables to a graph, in the process performing the postprocessing 
analyses described above. We use the "dot" graph-drawing tool [GNV88] to produce the 
graph. 

Performance is currently good, but could be greatly improved. In particular, the recursive- 
descent parser should be rewritten as an LALR parser for speed. We would gain a lot of 
performance at the cost of flexibility and simplicity by eliminating Q6 and generating 
constraints directly from the C abstract syntax (as Steensgaard does [S96]). Most 
importantly, simplifying constraints in the front end would produce at least an order of 
magnitude saving in the size of the database and the processing time of the solver. This is 
important because the solver is the potential performance bottleneck as the number of 
source files increases. 

To make the tool easy to use, we need a better query interface, preferably providing the 
program source code as context. The tables output by the query engine can be very large, 
suggesting that most of the postprocessing should be folded into the query engine (to 
reduce output and parse time). Perhaps our biggest problem is the graph-drawing 
program, "dot". It does not scale well to large, highly-connected systems. We would like 
to explore the use of interactive visualizations or other techniques to present the data in a 
more useful way. 

We intend to experiment with alternative type systems. We may be able to incorporate 
recent work on type inference of ill-behaved programs. We would like to encode more 
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information in types to increase the scope and accuracy of these techniques. Another 
interesting problem is to enrich the type sytem to handle a wider class of source languages, 
for example by adding subtyping for object-oriented languages. 

11 Related Work 

Our basic analysis technique is similar to "region inference", used by Tofte and Taplin 
[TT94] to improve the space efficiency of implementations of functional languages. The 
store is partitioned into distinct "regions", and each value is associated with a region, in 
the same way that we associate values with representation types; however, we have no 
analogue to their approximation of the side effects of functions. To our knowledge, we are 
the first to use these techniques for program understanding. 

Other researchers have been investigating type inference methods for inferring properties 
of C programs. In [S96] Steensgaard presents a method based on type inference that 
yields an almost-linear time "points-to" analysis. That algorithm is monomorphic (context- 
insensitive) and does not distinguish elements of compound structures, but variants have 
been constructed that overcome these limitations. 

Bowdidge and Griswold's "star diagram" tool aids in encapsulating abstract data types 
[BG94]. They assume that there is a single global variable to be abstracted, but they 
discuss extending their method to operate on data structures with multiple instances. They 
consider operating on all data structures of a certain type, but comment "The potential 
shortcoming of this approach is that two data structures of the same representation type, 
particularly two arrays, might be used for sufficiently different purposes that they are not 
really instances of the same type abstraction". Our method provides an answer to this 
problem. 

Muller et al. [MTOCM92] have proposed a reverse engineering technique in which first a 
static analysis is performed, and then the graphical output is visualized and manipulated by 
the user with the help of various automatic tools, to reveal and impose structure. Our 
analysis is more powerful than that incorporated in their Rigi tool, but we would certainly 
benefit greatly from such visualization and manipulation techniques. 

LCLint [EGHT94] is a tool that finds inconsistencies between C programs and simple 
specifications. There is some overlap between the properties they are able to check and 
ours (for example, some abstraction violations and unused data), but their methods cannot 
simultaneously distinguish different instances of the same C type and handle complex data 
structures. On the other hand, their checks incorporate more information, such as flow- 
sensitive dataflow analysis, so they will catch many errors that we cannot. The two tools 
are complementary. 
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Appendix 1: Built-in signatures 

The following primitives are used by the translator. 

Primitive Signature 
ref t -»t ref 
assign t ref -> t -» 0 
deref t ref -» t 
ink-tuple« ti->t2->...t„->(ti,t2,...,t»)a 

elem-tuplen,k (ti,t2, ...,t„)"->tk 

ref-arrayn
17 (t,t,...,t)"^tref 

copy-array18 (t ref -> t) -> t ref -> t ref 
undefined-scalar19 t 
NULL tref 
cast t -> u OR t -»t 
scalar,, number" 
pointer-arithop t ref8 -> number" -> t ref 
unary-arithop number" —> number" 
binary-arithop number" —> number" —> number" 
binary-relationalop number" —> number" —> number8 

pointer-relationalop t ref8 —» t ref —» number" 
pointer-unaryop t ref -> number" 

Pointer arithmetic operators: pointer add, pointer subtract 

Unary arithmetic operators: negate, bitwise not, logical not, unary plus 

Binary arithmetic operators: add, subtract, multiply, divide, modulus, left shift, right shift, 
bitwise and, bitwise or, bitwise xor 

Binary relational operators: less than, greater than, equal, less than or equal, greater than 
or equal, not equal 

Pointer relational operators: less than, greater than, equal, less than or equal, greater than 
or equal, not equal 

Pointer unary operators: logical not 

17 This is used to translate array initializers. 
18 This is used when we assign a structure value that contains an array. 
19 This is used to initialize scalars that aren't initialized in C. This allows us to store 
pointers in them, allowing us to handle programs that use integers polymorphically as 
integers or pointers. 
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